Use of Self-Complementary Adeno-Associated Virus Serotype 2 as a Tracer for Labeling Axons: Implications for Axon Regeneration
نویسندگان
چکیده
Various types of tracers are available for use in axon regeneration, but they require an extra operational tracer injection, time-consuming immunohistochemical analysis and cause non-specific labeling. Considerable efforts over the past years have explored other methodologies, especially the use of viral vectors, to investigate axon regeneration after injury. Recent studies have demonstrated that self-complementary Adeno-Associated Virus (scAAV) induced a high transduction efficiency and faster expression of transgenes. Here, we describe for the first time the use of scAAV2-GFP to label long-projection axons in the corticospinal tract (CST), rubrospinal tract (RST) and the central axons of dorsal root ganglion (DRG) in the normal and lesioned animal models. We found that scAAV2-GFP could efficiently transduce neurons in the sensorimotor cortex, red nucleus and DRG. Strong GFP expression could be transported anterogradely along the axon to label the numerous axon fibers from CST, RST and central axons of DRG separately. Comparison of the scAAV2 vector with single-stranded (ss) AAV2 vector in co-labeled sections showed that the scAAV2 vector induced a faster and stronger transgene expression than the ssAAV2 vector in DRG neurons and their axons. In both spinal cord lesion and dorsal root crush injury models, scAAV-GFP could efficiently label the lesioned and regenerated axons around the lesion cavity and the dorsal root entry zone (DREZ) respectively. Further, scAAV2-GFP vector could be combined with traditional tracer to specifically label sensory and motor axons after spinal cord lesion. Thus, we show that using scAAV2-GFP as a tracer is a more effective and efficient way to study axon regeneration following injury.
منابع مشابه
Tyrosine-mutated AAV2-mediated shRNA silencing of PTEN promotes axon regeneration of adult optic nerve
Activating PI3K/AKT/mTOR signaling pathway via deleting phosphatase and tensin homolog (PTEN) has been confirmed to enhance intrinsic growth capacity of neurons to facilitate the axons regeneration of central nervous system after injury. Considering conditional gene deletion is currently not available in clinical practice, we exploited capsid residue tyrosine 444 to phenylalanine mutated single...
متن کاملLong-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve.
The optic nerve crush injury is a well-accepted model to study the mechanisms of axonal regeneration after trauma in the CNS. The infection of retinal ganglion cells (RGCs) with an adeno-associated virus serotype 2 - ciliary neurotrophic factor (AAV2.CNTF) was previously shown to stimulate axonal regeneration. However, the transfection of axotomized neurons themselves may not be optimal to prom...
متن کامل3D Imaging of Axons in Transparent Spinal Cords from Rodents and Nonhuman Primates
The histological assessment of spinal cord tissue in three dimensions has previously been very time consuming and prone to errors of interpretation. Advances in tissue clearing have significantly improved visualization of fluorescently labelled axons. While recent proof-of-concept studies have been performed with transgenic mice in which axons were prelabeled with GFP, investigating axonal rege...
متن کاملSwitching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation.
The inability of mature CNS neurons to regenerate injured axons has been attributed to a loss of inherent growth potential of cells and to inhibitory signals associated with myelin and the glial scar. The present study investigated two complementary issues: (1) whether mature CNS neurons can be stimulated to alter their gene expression profile and switch into a strong growth state; and (2) whet...
متن کاملRegeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons.
Axon growth potential is highest in young neurons but diminishes with age, thus becoming a significant obstacle to axonal regeneration after injury in maturity. The mechanism for the decline is incompletely understood, and no effective clinical treatment is available to rekindle innate growth capability. Here, we show that Smad1-dependent bone morphogenetic protein (BMP) signaling is developmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014